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Abstract

Moving object detection systems generally detect shad-
ows cast by the moving object as part of the moving ob-
Jject. In this paper the problem of separating moving cast
shadows from the moving objects in outdoor environment
is addressed. Unlike other previous work, we provide a
method that does not use any geometrical information.
Our physics-based approach is based on a spatio-
temporal albedo normalization test and a dichromatic
reflection model. The physics based model is used both in
the estimation and verification phases. We provide results
for several different video sequences representing a vari-
ety of materials and shadows. We achieve excellent results
in distinguishing moving objects from their shadows. The
results indicate that our approach is robust to a variety of
background and foreground materials and varying iltumi-
nation conditions.

1. Introduction

Over the past several decades, many approaches have
been developed for moving object detection for indoor and
outdoor scenes. Moving object detection methods fall into
the following general categories: 1) background subtrac-
tion, 2) temporal differencing, 3} optical flow, and 4) sta-
tistical modeling. The first two methods clearly detect
moving shadows as well as moving objects. This is due to
the fact that intensity changes in the scene caused by mov-
ing shadows are as large as those of the new objects in the
scene. Optical flow on the other hand, measures the spatio-
temporal image gradient to estimate motion in the scene.
Since the shadow of a moving object potentially moves,
the shadow also contributes to the optical flow. In statisti-
cal modeling, the probability of observing values for a
pixel are estimated based on previous observations. Like a
new object, its shadow has not been observed in the past;
thus, probability of observing shadow of a new (moving)
object is the same as observing the object itself, hence,
detection of an object includes detection of its shadow as
well.

Shadows are typically divided into static and dynamic
shadows. Static shadows are shadows due to static objects
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such as buildings, parked cars, swaying trees, etc. Shadows
due to static objects and objects with repetitive motion can
be modeled by statistical-based approaches [5]. In this
paper we concentrate on dynamic shadows due to moving
objects such as pedestrians, cars, trucks, etc. In addition,
shadows can have umbra, penumbra or both. Under the
cloudy sky, the shadows are either weak (mostly penum-
bra) or non-existent. QOur research focuses on outdoor
scenes where we have a far away point source (sun) and a
diffuse source (sky) contributing to the illumination in the
scene. Since the distance between the objects and the
background is negligible compared to the distance of illu-
mination sources to the objects, most or all of the shadows
are umbra. Outdoor scenes provide challenging problems
in the sense that there is no control over illumination in the
scene and limited or no knowledge may be available about
the scene geometry.

We have developed a physics-based algorithm for dis-
tinguishing a moving object and its shadow in outdoor
scenies. The salient features of our approach are: a) Inte-
gration of different physical models: sound physical mod-
els such as albedo and dichromatic reflection models are
used in an integrated manner; b) Temporal improvement:
spatial albedo-ratio test is extended temporally, called spa-
tio-temporal albedo-ratio test, and it is utilized for surface
segmentation; ¢) Experiments: the results of the algorithm
are tested using a variety of real world data; and d) Ne
geometrical assumptions are made.

2. Previous Work

There have been several approaches to segment shad-
ows of objects. In [1] knowledge of the object geometry is
used to provide proximity, collinearity and coavexity con-
straints to separate airplanes from their shadows in aerial
photographs. Image projections of binary images are used
[2] to detect pedestrians and their shadows assuming that
objects are erect and knowledge of the light source is
given. By knowing the location of the sun with respect to
the camera and assuming that shadows are larger than a
certain size, [3] utilized a histogram based approach to
separate shadows of ground vehicles. Binocular vision is
also used for shadow detection [4]. By assuming that the
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Figure 1. Different steps of physics-based shadow detectlon algorithm. M, is the binary Mask of poten-

tial shadow pixels vpdated after each step.

shadows are formed on the ground plane and ground plane
being flat, one could project the image formed on one
camera back to the second camera plane via the ground
plane. In this manner, shadows tend to occupy the same
location on both images, All the above approaches either
utilize geometric information or restrict the classes of the
objects while none exploits the temporal information pre-
sent in video data.

Qur approach is different from the previous work in that
we solely rely on physics-based models, which can incor-
porate variety of classes of materials. We make no assump-
tion about geometry including the sun position, types of
objects and background and whether the background is
already in shadow or not. We only require that the back-
ground image does not contain any moving objects. Note
that moving objects do not cast shadow in regions where
background is already shadowed. This is due to the fact
that the same illumination source (e.g., sun) is blocked for
both the object's shadow and the background shadowed
region. We use the fact that the sky is blue due to the scat-
tering in the upper atmosphere; therefore, we assume that
the surface reflectance due to sky illumination is shifted
toward the blue. We assume that all pixels in the shadow
region are illuminated by the sky only; we consider inter-
reflections due to nearby objects as negligible. This is a
fair assumption since according to the power law of reflec-
tance, the energy of reflected light decays exponentially for
each reflection.

3. Technical Approach

The following is a summary of general observations
with respect to shadow and background:
(I} Shadow pixels fall on the same surface as the back-
ground, that is they have the same reflectance properties as
the background pixels. (11} Shadow pixels are darker than
their background in all three channels R, G, B. (lil) Back-
ground surfaces are modeled. (IV}) Background surfaces
are generally matte and they are different than moving ob-
ject surfaces. These observations are turned into assump-
tions that are used at different stages of our algorithm. We
do not expect these assumptions to be violated in a wide
variety of scenarios. Qur approach is outlined in Figure [.
In the following we describe each of the components and
its input and output.
e Moving Object Detection {Step 1): Given a video se-
quence, we utilize our previously developed detection sys-
tem that uses a mixture model for background modeling to
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detect moving objects [5]. The output of this stage is a
binary mask of the detected moving pixels obtained after
noise clean up. Background models (1;,6;) for each pixel,
and the current frame are also available at this stage.

« Initial Shadow Pixel Reduction (Step 2): Once a bi-
nary mask is available, we apply the second observation
(I1) that the shadow pixels are darker than their back-
ground in all three channels R, G, B. It excludes some ob-
ject pixels thus reducing the binary mask and computation
at later stages. During training only, the user selects areas
of typical backgrounds when they are shadowed. This can
be done either by selecting a frame when the object is in
the scene and casts a shadow or selecting a frame at a time
when the scene is naturally shadowed. Initial estimation of
the diffuse background color is then obtained by using the
algorithm in steps 5 and 6.

+ Blue Ratio Test (Step 3): Shadow regions are illumi-
nated by the sky. We assume the sky is blue and it is the
only source of illumination on shadowed regions. Although
all RGB values are lower in the shadow region, the amount
by which this reduction occurs is not proportional. The
blue ratio test hypothesizes shadow regions. [t states that
the reflectance change in shadowed regions is greater in
the red and green channels than the blue and is calculated
as (Ir/lg., lg,/lpy) < In/lw where the subscripts r, g, b indi-
cate the channel and F and B indicate foreground (object)
and background. Output of this stage is a further reduction
in the number of pixels from previous test.

s Albedo Ratio Segmentation (Step 4); Assuming that
our first observation (I) is valid, then a method based on
the albedo-ratio of neighboring pixels can provide a uni-
formity test for surface segmentation. It is shown that the
albedo-ratio test is invariant to viewing and illumination
geometry and spectral power distribution of the illumina-
tion, as long as the spectral response of the camera and
spectral distribution of illumination are constant [6]. This
is true for shadow regions since shadow regions are illumi-
nated by the blue sky and sky is also a constant and diffuse
source of illumination. Briefly, the albedo-ratio is derived
as follows. The intensity of a pixel is described as

[ = js(l) e(A)r(@, A)dA, where 9 is a vector including

surface normal, viewing direction and illumination direc-
tion, sf4) and e(A) are the spectral response of the camera
and the spectral distribution of the illuminating source.
Assuming that s¢4) = s and ef4) = ¢ are constant and inte-
grating over the spectrum A, [=k x p xR(Q) where k=5
xe,and p xR(()is the integrated result where p is the
reflection coefficient referred to as surface albedo. Assum-



ing that for two neighboring pixels the illumination direc-
tion and viewing direction are the same, and that two
neighboring pixels represent surfaces in the scene with
near identical normals, then R(8) for both pixels is the
same, We develop the spatio-temporal reflectance (albedo)
"ratio as follows. Let A, and B, be the background intensity
of the two neighboring pixels (the values are obtained from
the background image). Let Ay and By be the intensity val-
ues of the foreground corresponding to A and B respec-
tively. Now define the following ratios,
A - A, 8, - B, _Rt,-Ri,
Rt.- Ar + A, Rt~ 8, +B, PIA.B) = Rt, +Rt,
Since the first two ratios Rt, and Rtg are temporal ra-
tios, P(A,B) is the spatio-temporal ratio of albedo. If two
neighboring pixels belong to the same surface they will
have temporal ratios that are close together; hence, the
spatio-temporal ratio will be close to zero. P(A,B) is used
as the connectivity criterion in a connected component
labeling procedure and a threshold value of 0.05 is fixed.
After the'above segmentation, assuming that background is
of fairly uniform material, we select large segments.
Smaller segments {smaller than 20% of the largest seg-
ment) are discarded since they do not provide reliable in-
put for diffuse color estimation.
* Ambient Reflection Correction (Step 5): We consider
reflection due to sky, ambient reflection, as an additive
component. If the segments obtained from the previous
step are shadows, they represent reflection due to sky only,
this reflection must be accounted before the “true™ color
estimation is carried out. We simply subtract the fore-
ground pixel values from the background over the masked
area.
¢ Body Color Estimation (Step 6): We utilize dichro-
matic reflection model [7] to estimate the body color of the
surface, which is an inherent physical property of the mate-
rial. According to this model, total radiance of the reflected
light is the sum of diffuse (body) and specular (sur-
face/interface) reflections. L(A,8) = mi(8) c;(X) + my(0)
cp(A), where m; and m, are magnitude of reflection also
called scale factor due to interface and body geometry and
¢c; and ¢, are dichromatic reflection axis indicating reflec-
tion due to interface and body. The color of a pixel Cy is
described by tristimulus integration of L, G, = m; x C; +
my, x C,. (Note that both L (in step 6) and r (in step 4) are
functions of & and 6. L is used to distinguish the reflection
according to dichromatic model. r is normally used to de-
scribe the BRDF.) It is not possible to measure L for every
A; therefore, only RGB channels are used. The dichro-
matic model can be extended to account for ambient illu-
mination by an additive term C,, Thus, C,=m; x C; + my,
x Cy, + C,. Several sofutions for estimating the body com-
ponent (C,) such as plane fitting, clustering and principal
component analysis are available. We have utilized the
singular value decomposition ($VD) approach. One advan-
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tage of SVD in this analysis is that the principal direction
tends to naturally align in the direction of the body compo-
nent. Furthermore, as the by-product of SVD, eigenvalues
and eigenvectors provide error terms and possible exis-
tence of specularity. The SVD 'is applied to each seg-
mented region that remains after steps 4 and 5. The size of
the matrix supplied to SVD is nx3 where n is the number
of pixels in each region.

¢ Verification (Step 7): Results of the previous step are
in the form of diffuse (body) color vectors. These vectors
are compared to initial estimations obtained in step 2. The
regions corresponding to vectors within an acceptable
threshold (1°) are classified as shadow regions.

4, Experiments

We have collected several videos showing a variety of
background surfaces such as asphalt, concrete, and grass

Database 1

Database 2

Frae 604

[0.69,0.31,0] || 0.81,0.19,6] || .66,0.34,0] |[0.68,0.32,0]

Figure 2. Row 1=Typical frames, rows 2 to 5
show results after steps 1 to 4, resp., row 6=after
size filter in step 4, and row 7=detected shadows
after step 7. Last row of numbers correspond to
% of shadow pixels correctly classified, and
missed, and object pixels classified as shadows.




found in typical urban areas. The data was collected on
different days when the sky was either clear or had small
patches of cloud. The algorithm given in Figure 1 is inde-
pendent of the initial detection; hence, any of the four
methods discussed in Section | could be applied here, Af-
ter the training phase, once the initial color estimation has
been performed, the algorithm is applied to the test frames.

Figure 2 shows selected random frames of moving per-
sons from two video databases. Different background sur-
face types and textured and uniform object surfaces with
variety of colors are. shown. Frame 604 indicates the
shadow on asphalt with the subject wearing shorts and tex-
tured T-shirt. Frame 717 of the same database has the
shadow on a concrete surface with the subject closer to the
camera. Similarly, frames 401 and 681 belong to the sec-
ond database where the subject is wearing a red shirt and
white pants and the background surface is inclined, The
subject is closer to camera in frame 681.

To evaluate the results, the ground truth is obtained by
drawing a contour around the object and its shadow. The
numbers at the bottom of the last row of images in Figure 2
indicate the classification percentages. Generally, as the
subject approached the camera the algorithm performed
better. This is due to several reasons. The camera signal is
inversely proportional to the squared distance. Moreover,
as shadows become larger, the body (diffuse) color estima-
tion provides more robust results. Since each stage of the
algorithm assures inclusion of potential object pixels as
well as shadow pixeis, we expect to see high correct object
classification (low object misclassification) rates. Qur re-
sults indicate that the percentage of object pixels misclassi-
fied as shadows is very low, typically below 0.01%.

Figure 3. Shadow of
Object (pants) has
similar colors as back-
ground.

Figure 3 shows a frame and the shadow extracted by
the algorithm. It indicates a difficult case for our approach.
In this scene, the person’s pants has a neutral gray color,
the same as the background, and are self shadowed. As a
result, part of the pants is labeled as shadow. The self-
shadowed region (pants), however, has higher luminance
than the real shadow on the ground; hence, a statistical
luminance test based on the histogram can be used to fur-
ther classify these two regions.

Since cur algorithm is modular, any improvements can
be easily incorporated in the system. Two parameters af-
fect the performance of our algorithm. In step 3, the blue
ratio test is sensitive to the sensor and the background
color saturation. This step can be bypassed if the back-
ground color is highly saturated or sky is cloudy. In step 5,
by choosing large segments we may be eliminating smaller
segments that are actually the shadow pixels. This can be
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avercome if the reflected color is estimated for each pixel
rather than patches of pixels, This can be done by periodi-
cally imaging the scene as illumination direction of the sun
changes at the cost of increased computation. Note also
that we do not consider puddles; the dichromatic reflection
model is not suitable for puddles since it does not account
for transmittance and refractance due to water. Highly re-
flective surfaces such as puddles need to be handled by a
more suitable physical model.

5. Conclusions

We presented an algorithm that is effective in distin-
guishing moving objects from their shadows cast on a
background. The two main features of our physics based
algorithm are segmentation based on spatio-temporal al-
bedo test and utilization of a dichromatic reflection model.
In our future work we plan to investigate robust methods
for estimating color at the pixel level. Qur physics based
methed can also be extended to infrared sensors where
shadow regions can be modeled based on the thermal
properties.
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